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Abstract

In order to study water-gas transport processes in the gas-diffusion-layer (GDL) of a proton exchange membrane (PEM) fuel cell system, a
multiphase, multiple-relaxation-time lattice Boltzmann model is presented in this work. The model is based on the mean-field diffuse interface
theory and can handle the multiphase flows with large density ratios and various viscosities. By using the standard bounce back boundary condition
and an approximate average scheme for the non-slip and wetting boundary walls, respectively, detailed liquid-gas transportation in the GDL,
in which exact boundary condition is difficult to be implemented, can be simulated. Unlike most of lattice Boltzmann methods based on the
Bhatnagar—-Gross—Krook collision operator, the present model shows a viscosity-independent velocity field, which is very important in simulating
multiphase flows where various viscosities coexist. We validate our model by simulating a static droplet on a wetting wall and compare with
theoretical predictions. Then, we simulate a water-gas flow in the GDL of a PEM fuel cell and investigate the saturation-dependent transport

properties under different conditions. The results are shown to be qualitatively consistent with the previous numerical and theoretical works.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The proton exchange membrane (PEM) fuel cell is consid-
ered as one of the best approaches in the search of new energy
sources. In the PEM fuel cell, two reactant gases, hydrogen and
oxygen, combine at a membrane of about 50 wm thickness cov-
ered with a catalytic layer. The membrane is surrounded by a
gas-diffusion-layer (GDL) of about 200 wm thickness. In this
setup, the GDL plays an important role because it has several
specific functions such as providing a continuous transport of
the reactant gases and electronic conductivity between anode
and cathode [1]. However, since the PEM fuel cell is usually
operated with humidified reactant gases at lower temperatures,
a so-called “flooding” phenomenon, particularly on the cathode
side where the water vapors condense and block the pores of
the GDL, is possibly caused and hence degenerates the perfor-
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mance of the fuel cell. Therefore, it is vital to investigate the
liquid-gas transport in the GDL and study the transport proper-
ties so that the diffusion media with optimal performance can
be found.

In the literature, to simulate liquid-gas two-phase flows in
the GDL, Darcy’s law is usually applied for both phases with
properties especially for two-phase effects. The properties are
capillary pressure, which is the pressure difference between two
phases, and relative permeability, which adjust the permeability
of the Darcy’s law for each phase. These properties can be func-
tions of liquid saturation, which is ratio of liquid volume to pore
volume. Since the GDL is usually a complex random microstruc-
ture, it is very difficult to characterize its exact geometry and
so to calculate the transport properties [2]. Such difficulties
can be illustrated in Fig. 1, which shows a micrograph of the
Toray TGP-H-60 as a typical example and visualizations of the
reconstructed three-dimensional (3D) geometries via the virtual
material design and the dissipative particle dynamics (DPD),
respectively. Obviously, one can clearly see the strong anisotropy
of the medium structure.
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Fig. 1. Micrograph of the Toray TGP-H-60 and visualizations of reconstructed 3D-geometries generated by the virtual material design (middle) and the dissipative

particle dynamics (right), respectively.

Conventionally, to elucidate the two-phase transport phenom-
ena in the GDL, various numerical models have been developed.
The simplest approach is a single-phase model, in which gas and
liquid are considered as a single-fluid mixture and thus share the
same velocity field. Also, the interfacial tension effect is com-
pletely ignored. In this case, the total amount of water can be
obtained by solving a single equation without distinguishing
water vapor from liquid water. Once the total water concentra-
tion field is obtained, one may allow for the water concentration
going beyond the saturation level, essentially assuming super
saturation in the gas phase [3—5]. The more rigorous approach
to liquid water transportation in the GDL is a reformulation
model in which the classical two-phase models is reformulated
into a single equation, and the interfacial tension effect and GDL
wettability, essential for successful fuel cell operation, are fully
accounted for [6-10]. This model can efficiently produce most
of the GDL characteristics, but neglect the local structure details.
Another approach is in terms of volume-averaged or pore-level
models [11-16]. These models assume local interfacial equilib-
rium, namely, electrical, chemical, and thermal equilibrium at
the pore level. Conditions of validity of local interfacial equi-
librium were carefully defined. All of the above-cited models
are, strictly speaking, macroscopic models, although theoreti-
cal inconsistency may exist in some works, and by nature any
interface boundary between two fluid phases is mesoscopic.
Therefore, it is desirable to develop a mesoscopic model to study
the two-fluid flows.

Recently, as a mesoscopic model, the lattice Boltzmann (LB)
method has become a promising tool to simulate the multi-
phase flows [17-23]. The LB method originated from the lattice
gas cellular automata (LGCA) [24,25]. Due to its kinetic ori-
gin, the LB method poses some features that are different
from the macroscopic models. These features include pro-
gramming simplicity, intrinsic parallelism and straightforward
resolution of complex boundaries and multiple fluid species.
The later two features are quite appealing in simulating mul-
tiphase flows in the GDL-like structures. In these cases, the
fluid—solid interface is approximated by a zigzag approach so
that the standard bounce back boundary condition can be directly
applied, which reverse the momentum of fluid particles col-

liding with a solid boundary by mimicking the particle—solid
interaction for non-slip boundary condition. However, the major-
ity of the LB methods used in modeling multiphase flows are
based on the Bhatnagar—Gross—Krook (BGK) collision model
[26,27] and they often encounter problems such as numeri-
cal instabilities and viscosity-dependent velocity field [23,28].
Since various viscosities are usually presented simultaneously
in the two-phase flows, the above limits become critical in
accuracy of numerical simulations. To overcome these draw-
backs, a multiple-relaxation-time (MRT) LB model is developed
[22,23,28]. It has been demonstrated that the MRTLB model has
better stability and accuracy in simulating the multiphase flows
than the BGK counterparts [22,23]. However, most of the MRT
multiphase models are based on the single-component potential
model [18], which mimic two-phase flows by adjusting the inter-
action potentials and can only be effective for two-phase flows
with small density ratios (<100). A two-distribution-function
MRTLB model was recently proposed and it overcomes most
limits of the previous BGK and MRT model but requires an
implicit treatment of the interface tension [29].

In this paper, a MRTLB model for multiphase flows with large
density ratios and various viscosities is developed and applied
to simulate water-gas transportations in the GDL of a PEM fuel
cell. The model is based on the diffuse interface theory [30,31].
To handle the large density ratios and various viscosities, two dis-
tribution functions are employed in this model, and one of which
is used for modeling velocity field with total density of different
phases, and the other is for tracking the interface by including
effects of density differences between different phases. Unlike
the previous MRT models, in which the interface tension and
wetting boundary condition must be calculated in advance based
on the static droplet on the solid walls, the present model explic-
itly incorporates both factors. To catch the boundary effects,
besides the standard bounce back condition used to mimic the
non-slip boundary condition, an approximated average approach
based on the Taylor series expansion is presented to model the
wetting boundaries.

The rest of this paper is organized as follows. In Section 2,
a multiphase MRTLB model is presented. We first give a brief
introduction of the diffuse interface theory, and then present the
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MRTLB equations followed by numerical implementations of
the non-slip and wetting boundary conditions. Section 3 includes
two parts. In the first part this model is validated by simulating a
static droplet on a wetting wall and the results are compared with
theoretical solutions. In the second part, numerical simulations
of the liquid-gas flows in the tentative model of GDL are carried
out and the transport properties are investigated. We close with
a conclusion in Section 4.

2. Multiphase, multiple-relaxation-time lattice
Boltzmann model

2.1. Diffuse interface theory

Our model is based on the diffuse interface theory [29,30].
Here, we consider a flow with two fluids or phases such as gas
and liquid which have mass densities of p, and p; and viscosities
of ng and iy, respectively. The whole flow system s characterized
by the mass density p= | + pg, the viscosity n =1 + g and the
local order parameter ¢ denoting the density difference of two
phases. The thermodynamic behavior of the system can then be
described by the following free energy functional

Fe /dV <¢+ ’;|w|2) + /ds Vs, (1)

where Vis a control volume and S is the surface area of the wet-
ting wall. The first integral on the right-hand side is the standard
Ginzburg-Landau expression with a bulk free energy density v
defined by [31]

¥ =A@ — 1), 2)

where the parameters k and A determine the interface tension
0 = 4+/2kA/3, and interface width & = /2k/A [32]. With this
form of the bulk free energy, the system will contribute to two
equilibrium states, —1 and +1, corresponding low and high den-
sity fields, respectively.

The second term in Eq. (1) accounts for specific wetting inter-
actions at the solid—fluid boundaries due to the surface energy
Y. Functional minimization of F requires

Ys = ke(n - Vo), 3

which is evaluated at the solid wall, where n is the surface normal
pointing to fluids [33]. This condition leads to a static contact
angle 0 at a flat wall in the absence of flow such that the wetting
potential y has

y = —kn - Vg = 2sign (g - 9) \/cos';} (1 — cos§>v2 k,
(4)

where = arccos(sin” #). Given the free energy functional of Eq.
(1), the dynamic behavior of the two-phase fluid is governed by
the Navier—Stokes equations,

apu

W+v-puu=—v-P+nv2u+Fb, (5)

and the Cahn—Hilliard equation,

o

a—‘f FV-ou= MV, )
with u being the macroscopic fluid velocity, Fy, the body force
and M is the mobility. The gradient of the pressure tensor P and

the chemical potential p are written as [30-32]

V-P = V(o2 + pup) — uVe, (7
and
9
w= vy, (8)
dp

respectively, and ¢ is the sound speed given later. The bulk
pressure of the system can be calculated as

oy 1
p=pct+o——v—k(oVip—=|Vel*). ©9)
o 2
2.2. MRTLB method

In the framework of the MRT lattice Boltzmann method with
N discrete velocities [28,29], Egs. (5) and (6) can be solved by
the following two equations:

f(r + e;8t, 1 + 8t) = f(r, 1) — Q"' A p(ms(r, 1) — m‘}q(r, 1))
+ 58t (1 — ;Q_lAfQ> G(r, 1), (10)

g(r + e;ét, t + 61)
=g(r.1) — 07 Ag(my(r, 1) — mi(r, 1)), (11

wherei=1,2,...,N,fand g are the respective vectors of the den-
sity and order-parameter distribution functions at lattice location
r and time t. Ay =7 ) is the diagonal relaxation matrix give by

'7SDlN—l)ﬂ (12)

and Q is a N x N matrix which linearly transforms the distri-
bution functions f and g to the velocity moments my and my,,
respectively with

m;=0Q-f, (13)
m,=0-g (14)

The body-face symbols f, g, m and G denote the dimensional
column vectors and have

Ay = diag(sq0, Sol - -

f(e, 0:=(fo, f1..... fn-0'. g, 0:=(g0, g1, ... gn-1)",
m(r, £):=(m o, mf1, ..., mm—1),

my(r, 1):=(mgo, Mg, . .. ,mgN_l)T,

G(r, 1):=(Go, G1,...,Gn_1".

Here T denotes the transpose operator, and G represents the body
forcing, of which components are

(e; —u)
o Fo + uVo), 5)

S

Gi=w;
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where Ve comes from the pressure tensor (see Eq. (7)) and
w; is the weight coefficients dependent on the discrete velocity
model. For the three-dimensional 19-discrete-velocity (D3Q19)
model with ¢, = 1/4/3(8r = 8t = § = 1), the discrete velocities
and weighting coefficients are

0,0,0), i=0
e =< (£1,0,0),(0,=%1,0),(0,0,£1), i=1-6 ;
(+£1,+1,0), (£1,0, £1), (0, £1, £1), i=7—18
1
-, i=0
3
w; = ! i=1—6 (16)
A T A ’
1 .
—, 1=T7—-18
36

and the 19 equilibrium moments and their corresponding relax-
ation coefficients in A, are given in Table 1.

It should be noted that all the nonlinear velocity terms
can be omitted in the equilibria of {m;'} because the fourth
order isotropic lattice tensor is not required in recovering the
Cahn-Hilliard equation (Eq. (6)) [32]. The relaxation parame-
ters chosen in this work is followed the analysis of the MRT
model [34] to reduce the viscosity-dependence velocity field.
The transformation matrix Q for the D3Q19 model is given in
[34].

The local density p, the order parameter ¢ and the momentum
j are calculated, respectively as

p=1_fi (17

Table 1

0=> g (18)

PR s
.]::(]x’ Jys .]Z) = E fiei + EpOG 19)
i

It should be indicated that the density p defined in our
work can be thought as a nominal density, the real local
density should be obtained in terms of the order parameter
as p(@)=pg+ (@ — @g)(p1 — p)l(¢1 — @g), where ¢ and @g
are the upper and lower limits of the order parameter and
can be determined by the Maxwell’s equal-area rule. The
reason we use the nominal density in our work is that the
value of it changes little in the whole flow field and thus the
incompressible limit of the LBM is satisfied. On the other
hand, the density difference is reflected in the order parameter
¢ and its related chemical potential x, which acts as a force
and is added in the flow field. The magnitude of this force is
controlled by the surface tension and the interface thickness
only. Therefore, large density difference cases can be handled
easily and stability is not critical in this model. Besides this,
one can note that all the elements in Q are integers and the
inverse of the matrix Q can be calculated by 0~ = Q7/(Q-Q")
because Q is an orthogonal matrix, therefore, the program can
be efficiently coded by hand to reduce time-consuming matrix
operations and thus enhancing computational efficiency in
running the program. The main steps in the implementation of
the present method can be summarized as the following:

e Step 1: Compute moments {m?}} and {mz?} from the fluid
density and velocity (initially setting m ; = mjfll and m g =

mjg).

Equilibrium moments and their corresponding relaxation coefficients of fand g (oo is the initial value of the density, 7,=3n/(06t) +0.5 and 7o =M/I" +0.5 and I is

a free parameter controlled the mobility)

mj% =P Sf():()
. 1
m = —11p+ 1922 1 191 sp=—
e Po Ty
eq ne 11 .] .]
me =3p—9— — — = sp=sn
12 2 2 o 2=
me/q%S7 = Jry.z $3,5.7 =0
2 2—=ss1)
eq __~ . — :
M6 = T3 nre Sraes =8 S
3 —i-i
eq X
myy = —— S =S¢
19 pg 9 =
P Rt D | S0 =S
10 7 10 =571
2 2
Jy = Jz
me == SAL=571
AR
eq Iy~ ) o —
M T T S2 =50
=20 53 =31
f13 ) )
mily = s 814 =5p1
L0 '
efqli _ JxJz P
‘eq’ £0
mei6—18 = 0 Sf16-18 = Sf1

eq

My =@ 5e0=0
I 1

eq _ g -

me = —30p + 19— Sgl =
€5 Tg
T

eq
m_,=12¢ —9—- S¢2 =S

82 2 g g

eq ¢ . _
Mg357 = g dxrs 5¢3,5,7=0

2¢ (2 —5,1)

eq . 8

Mey68 =" Jx,y,z 5¢4,6,8 = 8
> 3p0 (8 —sg1)

eq _ —
mag = 0 Sg9 =S¢l

eq _ -
mglO_O Sg10 =Sgl

eq _ _
My =0 Sg11 =Sg1

eq _ -
Mepp = 0 Sg12 =Sg1

eq .
mg]‘ =0 $g13 =Sg1

eq _ -
mg]4_0 Sg14 =Sg1

eq _ _
M s =0 Sg15 = Sg1

eq _ —
Me16—18 = 0 Sg16-18 =S¢l
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e Step 2: Calculation the equilibria {m‘}?} and {mg} in the
moment space.

e Step 3: Compute the post-collision density distribution func-
tions by Eqgs. (10) and (11).

o Step 4: Advecting the distribution function {f;} and {g;}.

2.3. Boundary conditions and numerical evaluation of the
derivatives

One of the advantages of the LB method over the conventional
Navier—Stokes solvers is the implementation of the boundary
condition on the complex geometries like the GDL structure
shown in Fig. 1. Theoretically, this kind of geometry can only be
approximated by the zigzag grids (see Fig. 2) due to the difficul-
ties of experimental measuring or mathematical describing the
exact boundary positions. In this situation, the standard bounce
back boundary condition of the LB method provides an efficient
and simple way to model the non-slip condition in terms of the
distribution functions {f;}. As shown in Fig. 2, the unknown
distribution functions (black dash arrow) coming from the solid
part can be simply set to the known values of their corresponding
ones with opposite directions (blue solid arrow) and the actual
non-slip boundary can be realized at the one-half grid spacing
beyond the last fluid node [23].

Since the wetting boundary condition (Eq. (4)) is an equi-
librium condition, it is appropriate to impose it through the
equilibria {mz,?} [35]. From Eq. (4), to set the equilibrium bound-
ary condition we usually need to calculate the normal vector of
the boundary so that the order parameter ¢ and its second deriva-

boundar

I,

ﬂmi ® oo

Fig. 2. 2D sketch of implementations of the boundary conditions of complex
geometry (fluid points: blue solid circle; solid points: black solid circle; the
nearest and next-nearest fluid-side points: inside the green dash elliptic circle).

tives V2<p on the boundary nodes are obtained. However, as we
stressed earlier, it is difficult for the geometries like the GDL.
To avoid this difficulty, in this work we use an approximation
strategy to evaluate them. In Fig. 2, the boundary point P (red
solid circle) is surrounded by some fluid points (blue solid circle)
and some solid points (black solid circle). To obtain the values
of ¢ and V2¢ on the point P, Taylor series expansions of ¢ on
the nearest and next-nearest neighboring fluid-side points of the
point P (see Fig. 2) are carried out, and for each expansion point
we have pp=¢f] — 800 + 0(82), which can be further approx-
imated by ¢p = ¢r] — ddnp. Therefore, on average, the order
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Fig. 3. Time variations of the spreading and shrinking droplet shape at 6 =60° and 120°, respectively. The isosurface represents the order parameter ¢ =0.
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parameter ¢ and its second derivatives V¢ on the point P can
be approximated as:

~ > i(pr1 — 8onpp) _ (e + 181 (v/ k)

@p N N (20)
V2pp = 2% (ot _]‘iP — 80hp)
_ 2> (pe1 — op + 18 (y/ k) @1
N 9

where § is the unit grid space and ¢ is the order parameters on
the nearest and next-nearest neighboring fluid-side points of the
pointB;/=1,2,...,Nwith Nrepresenting the total number of the
nearest and next-nearest fluid-side points of the point P; y can
be calculated from Eq. (4) directly. The implementation of Egs.
(20) and (21) is straightforward by using the lattice stencils, and
one can judge and count the fluid-side points by the streaming
directions of the discrete velocities whether pointing to fluid
field or not.

In the LB framework, the first order and second order deriva-
tives of ¢ in the fluid field can also be conventionally calculated
by using the lattice stencils so that the discretization errors are
reduced. In this work, the following stencil scheme is used:

_ 3Ziw,‘(p(l' + €;8t, 1 + 8h)e;;
B 8t ’

_ —24¢(r, 1) 4 363 wip(r 4 81, 1 + 81)
B 6(51) :

where j=1, 2, 3 denotes the dimensions.

Ve (22)

Vzgo

(23)

3. Results and discussion
3.1. Model validation

To validate the present model, a static droplet held on a wall is
simulated, and the contact angle is tested. A hemispheric droplet
with radius R placed on a wall is considered and it is brought
to the equilibrium state at rest under the effects of the wet-
ting potential y imposed on wall. The computational domain

180
150 |
- @
= 120 | @
o)
e @
S 9 &)
9o
S C
HIN: ©
S e f 2]
- =)
30
0 PSS N S R S | L
-0.04 -0.02 0 0.02 0.04
Wetting potential y

Fig. 4. Comparison of calculated contact angles with the theoretical predictions
(Eq. (4)) (triangle, theoretical prediction; circle, simulation results).

Fig. 5. A model of 3D gas-diffusion-layer with edges parallel to the main flow
directing from left to right. Slice shows the velocity vectors at a mid-plane
parallel to the main flow direction (§p=1.7 x 1073, 6=120°, m/ng =100).
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Fig. 6. Comparison of the calculated absolute permeability of the GDL as a
function of the fluid kinetic viscosity.

is divided into a 51 x 51 x 51 cubic lattice with §=1 and its
edges parallel to the x, y and z coordinate axes. The radius
of the droplet R is set 105 or 158. The other parameters used
are pi/pg =1000, m/ng =100, pg=1, ng=0.1, 0 =7.86 x 1072,
£=4.55and I" = 10~ 2. The contact angle is changed in the range

1
(0] Kowp
+ A Kr\'l""’
08 F — Kowp by Eq(29) n=4
I = Kovwp by Eq.(29) n=4
A 0.6
g .
04
02 | A _
F A -
P ¢ S B
i 5
[ S S 1 1 I

el L P e,
0.4 0.5 0.6 0.7
Saywp

Fig. 7. Comparison of the relative permeabilities obtained by the present model
and van Genuchten function (Eq. (29)).
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of 45° <6 < 145°. Periodic boundary conditions are applied in
both x and y directions and non-slip/wetting boundary condi-
tions are used at top and bottom walls in z direction. For this
problem, the equilibrium radius R and contact angle 6. of the
droplet can be calculated by the following formula [36]:

1 b2
¢ 2 ( 4h> ’ @4
0. = t o—— 25)
c = arc an( ( )) s (

Flow direction

5060

t = 500006t

t = 10000006t

t = 15000006t

where £ is the height of the droplet and b is the contact length
of the droplet connecting to the wall.

Fig. 3(a) and (b) shows the time variations of the droplet
on the hydrophilic (6 =60°) and hydrophobic (6 = 120°) walls,
respectively. It is seen from Fig. 3(a), the droplet spreads as the
time passes and finally reaches to its equilibrium shape with
the calculated contact angle 6. =59°. As shown in Fig. 3(b), the
connecting area between the droplet and the wall reduces as the
time passes, and the droplet reaches its equilibrium shape with
6. =122°. Fig. 4 shows the variation of the calculated contact
angle with the wetting potential y. The present results are in good
agreement with the theoretical curve obtained by Eq. (4). The

Fig. 8. Snapshots of the liquid-gas transport processes in the model of GDL at 5p=1.7 x 103 (left row) and 3.4 x 1073 (right row), respectively. Flow direction is

indicated by the arrow on the top of the figure.
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agreement between the theory and our simulation indicates that
the present method handles the two-phase flows with wetting
boundaries correctly.

3.2. Liquid-gas flows in GDL

For the works presented in this section, we fit a 3D-geometry
to a carbon-fiber structure of the GDL with a porosity of 80.3%
and characteristic pore scale 10 wm (see Fig. 1) by the DPD
method [37]. The carbon fiber made in the GDL is hydrophobic,
and therefore in the following the gas phase is denoted as the
wetting phase (WP) while the liquid phase as non-wetting phase
(NWP) for brevity. The computational domain is discretized by
51 x 51 x 51 or 101 x 101 x 101 cubic lattice with the same
coordinate arrangement as in the case of Section 3.1. Periodic
boundary conditions are used on all sides of the domain for the
velocity field. For the order parameter, it is assumed to be equal
to 1 (liquid phase) at one side and —1 (gas phase) at the opposite
side and the other four sides are treated as periodic bound-
aries. Unless otherwise indicated, other parameters used in the
simulations of this section are same as those used in Section 3.1.

3.2.1. Absolute permeability and comparison between the
BGK and MRT model

The mathematical basis of immiscible two-phase flows in a
porous medium is Darcy’s law, written as

_K(kij)v
n

where @ denotes the average flow velocity and K represents the
absolute permeability tensor of the porous medium. The compo-
nent k;; of the permeability tensors represents the permeability
of the material in the direction parallel to the jth coordinate axis
if the main flow direction is parallel to the ith coordinate axis.
For convenience, here we assume that the edges of the sam-
ple are parallel to the Cartesian coordinate axes. As a direct
consequence, the off-diagonal elements of K are equal to zero.
Furthermore, if the pressure gradient (i.e., the main flow direc-
tion) is parallel to the ith coordinate axis, Darcy’s law reduces
to the scalar equation and we have

u= D, (26)

nLi;
5p

where i; is the average flow speed, L the length of the medium
edge which is parallel to the ith coordinate axis, and dp stands
for the pressure difference across the medium in the ith direc-
tion. The present situation is visualized in Fig. 5, which shows
streamlines of the velocity field at §p=1.7 x 1073,6=120° and
m/ng =100.

The absolute permeability of the GDL with respect to differ-
ent fluid kinetic viscosities is also calculated. In this simulation,
a constant pressure drop 8p=1.7 x 1073 is applied to the
single-phase flow through the GDL on the 51 x 51 x 51 and
101 x 101 x 101 grids. To show the advantage of the MRT
model over its BGK counterparts, the simulation using the BGK
model is carried out at the same time. Fig. 6 shows the calcu-
lated absolute permeabilities at various viscosities obtained by

kij =

, 27

the MRT and BGK models. It is clearly seen that the permeabil-
ities obtained by the MRT model remain essentially constant for
both grid sets when the viscosity changes. However, the results
of the BGK simulation change significantly and increase with
increasing viscosity. Therefore, compared to the BGK model,
the present MRT model is more suitable for simulating mul-
tiphase flow systems, in which different viscosities coexist. In
addition, by using the MRT model for the multiphase flow sys-
tems, computational efficiency can be enhanced by using coarser
grid set while desired accuracy is achieved. Based on the above
observations, all the following simulations use the 51 x 51 x 51
grid set.

3.2.2. Relative permeability and effects of pressure drop,
wettability and viscosity ratio

The relative permeability K; is defined by an extension of
Darcy’s law to

_ Kr(Sa)Kv
n

u= p, (28)
where Sa (ratio of phase volume over pore volume in GDL)
reflects that the permeability depends on the saturation. Using
Eq. (28) we can calculate K.(Sa) for both wetting and non-
wetting phases. Theoretically, the relative permeabilities can be
written in terms of the saturations of each phase as the well
known van Genuchten function

K,(Sa) = Sal/3(1 — (1 — Sa)yr—D/my>"=1/n

(29)
where the values of # are in the range of 2 <n < 5. Fig. 7 shows
the comparison of the calculated K (Sa) by the present model
and Eq. (29). Seen from this figure, the results obtained by the
present model generally agree with the solutions of Eq. (29).
With the increase of the NWP saturation, and the WP permeabil-
ity decreases while the NWP permeability increases. In order to
make a deep insight of the relative permeability, in the following
we first investigate the dependency of the relative permeability
on the pressure drop dp. In this case, we fix the contact angle
0=120° and viscosity ratio n/ng = 100, and examine the effects
of two values of pressure drop §p=1.7 x 1073 and 3.4 x 1073,
respectively.
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Fig. 9. Relative permeability vs. NWP saturation for liquid-gas flow in GDL at
different 5p with 6 =120°.
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Fig. 8 shows snapshots of the liquid-gas transport processes
in the GDL at three different time steps at p=1.7 x 107> and
3.4 x 1073, respectively. For clearly displaying the liquid trans-
portation, the GDL structure is not shown in this figure and the
following Fig. 11. As illustrated in Fig. 8, larger dp drives the
NWP to move faster than the small §p because larger driving
force more easily overcomes the capillary resistance due to the

Flow direction

interface tension. The influence of §p on the relative permeabil-
ity K, for both NWP and WP is shown in Fig. 10. As shown in
Fig. 9, when dp is increased, the WP relative permeability does
not change much for the range of the NWP saturation. However,
the NWP permeability is increased slightly at the intermedi-
ate NWP saturation. These observations are in agreement with
previous numerical and experimental works [22,36].

t = 500000t

t = 1000006t

t = 1500000t

Fig. 10. Snapshots of the liquid-gas transport processes in the model of GDL at contact angles 6 = 105° (left row) and 120° (right row), respectively. Flow direction

is indicated by the arrow on the top of the figure.
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Fig. 11. Relative permeability vs. NWP saturation for liquid-gas flow in GDL
at different contact angles with §p=1.7 x 10~3 and m/ng =100.

Next, the effects of the wettability on the relative perme-
abilities at 8p=1.7 x 1073 and m/mg =100 are studied. The
wettability of the wall is controlled by tuning the contact angle 6.
Here, two contact angles 6 = 105° and 120° are examined. Fig. 10
shows snapshots of the liquid-gas transport processes with the
two contact angles in the GDL at three different time steps. As
illustrated in this figure, at the smaller contact angle 8 = 105°, i.e.
a stronger wettability of the GDL, the NWP transport faster than
that at = 120°. The reason behind this phenomenon is obvious:
the stronger the wettability of the GDL has, the larger the driven
force imposed on the liquid, and hence the easier the liquid
movement overcomes the resistance of the capillary force. This
mechanism also leads to a higher NWP relative permeability in
the strong-wettability GDL than in the weak-wettability one, and
this finding can be observed in Fig. 11, which shows K for both
NWP and WP as a function of the NWP saturation at contact
angles 6 =105° and 120°, respectively. Again, the observations
from Figs. 10 and 11 are in agreement with previous numerical
and experimental works [22,36].

The viscosity-ratio effects on the relative permeability at
8p=1.7 x 1073 and # = 120° are further studied in Fig. 12, which
shows the relative permeabilities of the NWP and WP as a func-
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Fig. 12. Relative permeability vs. NWP saturation for liquid-gas flow in GDL
at different viscosity ratios with §p=1.7 x 1073 and 6 = 120°.

tion of the NWP saturation for two viscosity ratios, n1/ng =10
and n/ng =100. Consistent with the findings in the previous
works [22,36], we also observe that a decreased relative perme-
ability of the NWP is caused by an increased viscosity ratio,
especially at intermediate saturation. This phenomenon can be
attributed to the so-called “lubricating” effect on the liquid flow
due to a gas film, which is caused by that, gas flowing in rel-
atively small pores is strongly coupled to the liquid flowing in
the larger regions of pore structure, and makes liquid experience
an apparent hydraulic slip [36]. The greater the viscosity ratio,
the greater the hydraulic slip becomes. On the other hand, as
shown in Fig. 12, the relative permeability of the WP slightly
increases, which indicates that the lubricating effect cause an
increase of the WP average velocity and hence the WP relative
permeability.

4. Conclusions

In this paper, a MRTLB model is presented and applied to
simulate water-gas transportations in the GDL of a PEM fuel
cell. The model is based on the diffuse interface theory, and
employs two distributions so that multiphase flows with large
density ratios and various viscosities can be handled. The inter-
face tension and wetting boundary condition in the present model
are straightforwardly implemented. To numerically realize the
boundary conditions for the complicated structure like GDL,
besides the standard bounce back condition used for the non-
slip condition, an approximated average scheme based on the
extrapolation method is derived to mimic wetting boundaries.
The numerical validation of the static droplet on a wetting wall
shows good agreement with the theoretical predictions. Com-
pared to the conventional macroscopic multiphase models like
volume-averaged or pore-level models, which cannot track the
interface itself, the present MRTLB model tracks the phase
interface automatically and has advantages in programming sim-
plicity, intrinsic parallelism and straightforward resolution of
complex boundaries. Furthermore, the present model can easily
handle the three-dimensional cases as shown in this paper.

The water-gas transportation in a 3D modeled GDL structure
is simulated and the transport properties including absolute and
relative permeabilities are calculated. The effects of the pressure
drop, wettability and viscosity ratio on the relative permeability
are also investigated. The obtained results show the expected
trend as in the previous numerical and experimental works. This
investigation demonstrates that the present multiphase MRTLB
model is potentially a viable method for the flows in fuel
cells.
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