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bstract

In order to study water-gas transport processes in the gas-diffusion-layer (GDL) of a proton exchange membrane (PEM) fuel cell system, a
ultiphase, multiple-relaxation-time lattice Boltzmann model is presented in this work. The model is based on the mean-field diffuse interface

heory and can handle the multiphase flows with large density ratios and various viscosities. By using the standard bounce back boundary condition
nd an approximate average scheme for the non-slip and wetting boundary walls, respectively, detailed liquid-gas transportation in the GDL,
n which exact boundary condition is difficult to be implemented, can be simulated. Unlike most of lattice Boltzmann methods based on the

hatnagar–Gross–Krook collision operator, the present model shows a viscosity-independent velocity field, which is very important in simulating
ultiphase flows where various viscosities coexist. We validate our model by simulating a static droplet on a wetting wall and compare with

heoretical predictions. Then, we simulate a water-gas flow in the GDL of a PEM fuel cell and investigate the saturation-dependent transport
roperties under different conditions. The results are shown to be qualitatively consistent with the previous numerical and theoretical works.

2007 Elsevier B.V. All rights reserved.
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. Introduction

The proton exchange membrane (PEM) fuel cell is consid-
red as one of the best approaches in the search of new energy
ources. In the PEM fuel cell, two reactant gases, hydrogen and
xygen, combine at a membrane of about 50 �m thickness cov-
red with a catalytic layer. The membrane is surrounded by a
as-diffusion-layer (GDL) of about 200 �m thickness. In this
etup, the GDL plays an important role because it has several
pecific functions such as providing a continuous transport of
he reactant gases and electronic conductivity between anode
nd cathode [1]. However, since the PEM fuel cell is usually
perated with humidified reactant gases at lower temperatures,

so-called “flooding” phenomenon, particularly on the cathode

ide where the water vapors condense and block the pores of
he GDL, is possibly caused and hence degenerates the perfor-

∗ Corresponding author. Tel.: +81 561 71 7111; fax: +81 561 63 5258.
E-mail address: e1351@mosk.tytlabs.co.jp (X.-D. Niu).
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ance of the fuel cell. Therefore, it is vital to investigate the
iquid-gas transport in the GDL and study the transport proper-
ies so that the diffusion media with optimal performance can
e found.

In the literature, to simulate liquid-gas two-phase flows in
he GDL, Darcy’s law is usually applied for both phases with
roperties especially for two-phase effects. The properties are
apillary pressure, which is the pressure difference between two
hases, and relative permeability, which adjust the permeability
f the Darcy’s law for each phase. These properties can be func-
ions of liquid saturation, which is ratio of liquid volume to pore
olume. Since the GDL is usually a complex random microstruc-
ure, it is very difficult to characterize its exact geometry and
o to calculate the transport properties [2]. Such difficulties
an be illustrated in Fig. 1, which shows a micrograph of the
oray TGP-H-60 as a typical example and visualizations of the

econstructed three-dimensional (3D) geometries via the virtual
aterial design and the dissipative particle dynamics (DPD),

espectively. Obviously, one can clearly see the strong anisotropy
f the medium structure.

mailto:e1351@mosk.tytlabs.co.jp
dx.doi.org/10.1016/j.jpowsour.2007.05.081
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ig. 1. Micrograph of the Toray TGP-H-60 and visualizations of reconstructed
article dynamics (right), respectively.

Conventionally, to elucidate the two-phase transport phenom-
na in the GDL, various numerical models have been developed.
he simplest approach is a single-phase model, in which gas and

iquid are considered as a single-fluid mixture and thus share the
ame velocity field. Also, the interfacial tension effect is com-
letely ignored. In this case, the total amount of water can be
btained by solving a single equation without distinguishing
ater vapor from liquid water. Once the total water concentra-

ion field is obtained, one may allow for the water concentration
oing beyond the saturation level, essentially assuming super
aturation in the gas phase [3–5]. The more rigorous approach
o liquid water transportation in the GDL is a reformulation

odel in which the classical two-phase models is reformulated
nto a single equation, and the interfacial tension effect and GDL
ettability, essential for successful fuel cell operation, are fully

ccounted for [6–10]. This model can efficiently produce most
f the GDL characteristics, but neglect the local structure details.
nother approach is in terms of volume-averaged or pore-level
odels [11–16]. These models assume local interfacial equilib-

ium, namely, electrical, chemical, and thermal equilibrium at
he pore level. Conditions of validity of local interfacial equi-
ibrium were carefully defined. All of the above-cited models
re, strictly speaking, macroscopic models, although theoreti-
al inconsistency may exist in some works, and by nature any
nterface boundary between two fluid phases is mesoscopic.
herefore, it is desirable to develop a mesoscopic model to study

he two-fluid flows.
Recently, as a mesoscopic model, the lattice Boltzmann (LB)

ethod has become a promising tool to simulate the multi-
hase flows [17–23]. The LB method originated from the lattice
as cellular automata (LGCA) [24,25]. Due to its kinetic ori-
in, the LB method poses some features that are different
rom the macroscopic models. These features include pro-
ramming simplicity, intrinsic parallelism and straightforward
esolution of complex boundaries and multiple fluid species.
he later two features are quite appealing in simulating mul-
iphase flows in the GDL-like structures. In these cases, the
uid–solid interface is approximated by a zigzag approach so

hat the standard bounce back boundary condition can be directly
pplied, which reverse the momentum of fluid particles col-

w

a
i

eometries generated by the virtual material design (middle) and the dissipative

iding with a solid boundary by mimicking the particle–solid
nteraction for non-slip boundary condition. However, the major-
ty of the LB methods used in modeling multiphase flows are
ased on the Bhatnagar–Gross–Krook (BGK) collision model
26,27] and they often encounter problems such as numeri-
al instabilities and viscosity-dependent velocity field [23,28].
ince various viscosities are usually presented simultaneously

n the two-phase flows, the above limits become critical in
ccuracy of numerical simulations. To overcome these draw-
acks, a multiple-relaxation-time (MRT) LB model is developed
22,23,28]. It has been demonstrated that the MRTLB model has
etter stability and accuracy in simulating the multiphase flows
han the BGK counterparts [22,23]. However, most of the MRT

ultiphase models are based on the single-component potential
odel [18], which mimic two-phase flows by adjusting the inter-

ction potentials and can only be effective for two-phase flows
ith small density ratios (≤100). A two-distribution-function
RTLB model was recently proposed and it overcomes most

imits of the previous BGK and MRT model but requires an
mplicit treatment of the interface tension [29].

In this paper, a MRTLB model for multiphase flows with large
ensity ratios and various viscosities is developed and applied
o simulate water-gas transportations in the GDL of a PEM fuel
ell. The model is based on the diffuse interface theory [30,31].
o handle the large density ratios and various viscosities, two dis-

ribution functions are employed in this model, and one of which
s used for modeling velocity field with total density of different
hases, and the other is for tracking the interface by including
ffects of density differences between different phases. Unlike
he previous MRT models, in which the interface tension and
etting boundary condition must be calculated in advance based
n the static droplet on the solid walls, the present model explic-
tly incorporates both factors. To catch the boundary effects,
esides the standard bounce back condition used to mimic the
on-slip boundary condition, an approximated average approach
ased on the Taylor series expansion is presented to model the

etting boundaries.
The rest of this paper is organized as follows. In Section 2,

multiphase MRTLB model is presented. We first give a brief
ntroduction of the diffuse interface theory, and then present the
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RTLB equations followed by numerical implementations of
he non-slip and wetting boundary conditions. Section 3 includes
wo parts. In the first part this model is validated by simulating a
tatic droplet on a wetting wall and the results are compared with
heoretical solutions. In the second part, numerical simulations
f the liquid-gas flows in the tentative model of GDL are carried
ut and the transport properties are investigated. We close with
conclusion in Section 4.

. Multiphase, multiple-relaxation-time lattice
oltzmann model

.1. Diffuse interface theory

Our model is based on the diffuse interface theory [29,30].
ere, we consider a flow with two fluids or phases such as gas

nd liquid which have mass densities of ρg and ρl and viscosities
fηg andηl, respectively. The whole flow system is characterized
y the mass density ρ = ρl + ρg, the viscosity η= ηl + ηg and the
ocal order parameter ϕ denoting the density difference of two
hases. The thermodynamic behavior of the system can then be
escribed by the following free energy functional

=
∫

dV

(
ψ + k

2
|∇ϕ|2

)
+

∫
dS ψs, (1)

here V is a control volume and S is the surface area of the wet-
ing wall. The first integral on the right-hand side is the standard
inzburg–Landau expression with a bulk free energy density ψ
efined by [31]

= A(ϕ2 − 1)
2
, (2)

here the parameters k and A determine the interface tension
= 4

√
2kA/3, and interface width ξ = √

2k/A [32]. With this
orm of the bulk free energy, the system will contribute to two
quilibrium states, −1 and +1, corresponding low and high den-
ity fields, respectively.

The second term in Eq. (1) accounts for specific wetting inter-
ctions at the solid–fluid boundaries due to the surface energy
s. Functional minimization of F requires

s = kϕ(n · ∇ϕ), (3)

hich is evaluated at the solid wall, where n is the surface normal
ointing to fluids [33]. This condition leads to a static contact
ngle θ at a flat wall in the absence of flow such that the wetting
otential γ has

= −kn · ∇ϕ = 2sign
(π

2
− θ

) √
cos

β

3

(
1 − cos

β

3

)√
2Ak,

(4)

here β = arccos(sin2 θ). Given the free energy functional of Eq.

1), the dynamic behavior of the two-phase fluid is governed by
he Navier–Stokes equations,

∂ρu
∂t

+ ∇ · ρuu = −∇ · P + η∇2u + Fb, (5)

f

G
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nd the Cahn–Hilliard equation,

∂ϕ

∂t
+ ∇ · ϕu = M∇2μ, (6)

ith u being the macroscopic fluid velocity, Fb the body force
nd M is the mobility. The gradient of the pressure tensor P and
he chemical potential μ are written as [30–32]

· P = ∇(ρc2
s + μϕ) − μ∇ϕ, (7)

nd

= ∂ψ

∂ϕ
− k∇2ϕ, (8)

espectively, and cs is the sound speed given later. The bulk
ressure of the system can be calculated as

= ρc2
s + ϕ

∂ψ

∂ϕ
− ψ − k

(
ϕ∇2ϕ − 1

2
|∇ϕ|2

)
. (9)

.2. MRTLB method

In the framework of the MRT lattice Boltzmann method with
discrete velocities [28,29], Eqs. (5) and (6) can be solved by

he following two equations:

(r + eiδt, t + δt) = f(r, t) −Q−1Λf (mf (r, t) − meq
f (r, t))

+ δt
(

I − 1

2
Q−1ΛfQ

)
G(r, t), (10)

(r + eiδt, t + δt)

= g(r, t) −Q−1Λg(mg(r, t) − meq
g (r, t)), (11)

here i = 1, 2, . . ., N, f and g are the respective vectors of the den-
ity and order-parameter distribution functions at lattice location
and time t.Λα(α= f, g) is the diagonal relaxation matrix give by

α = diag(sα0, sα1, . . . , sαN−1), (12)

nd Q is a N × N matrix which linearly transforms the distri-
ution functions f and g to the velocity moments mf and mg,
espectively with

f = Q · f, (13)

g = Q · g (14)

he body-face symbols f, g, m and G denote the dimensional
olumn vectors and have

(r, t):=(f0, f1, . . . , fN−1)T, g(r, t):=(g0, g1, . . . , gN−1)T,

f (r, t):=(mf0,mf1, . . . , mfN−1)T,

g(r, t):=(mg0,mg1, . . . , mgN−1)T,

(r, t):=(G0,G1, . . . ,GN−1)T.

ere T denotes the transpose operator, and G represents the body

orcing, of which components are

i = wi
(ei − u)

c2
s

· (Fb + μ∇ϕ), (15)
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here μ�ϕ comes from the pressure tensor (see Eq. (7)) and
i is the weight coefficients dependent on the discrete velocity
odel. For the three-dimensional 19-discrete-velocity (D3Q19)
odel with cs = 1/

√
3(δr = δt = δ = 1), the discrete velocities

nd weighting coefficients are

i =

⎧⎪⎨
⎪⎩

(0, 0, 0), i = 0

(±1, 0, 0), (0,±1, 0), (0, 0,±1), i = 1 − 6

(±1,±1, 0), (±1, 0,±1), (0,±1,±1), i = 7 − 18

;

i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

3
, i = 0

1

18
, i = 1 − 6

1

36
, i = 7 − 18

, (16)

nd the 19 equilibrium moments and their corresponding relax-
tion coefficients in Λα are given in Table 1.

It should be noted that all the nonlinear velocity terms
an be omitted in the equilibria of {meq

gi } because the fourth
rder isotropic lattice tensor is not required in recovering the
ahn–Hilliard equation (Eq. (6)) [32]. The relaxation parame-

ers chosen in this work is followed the analysis of the MRT
odel [34] to reduce the viscosity-dependence velocity field.
he transformation matrix Q for the D3Q19 model is given in

34].
The local density ρ, the order parameterϕ and the momentum
are calculated, respectively as

=
∑
i

fi, (17)

•

able 1
quilibrium moments and their corresponding relaxation coefficients of f and g (ρ0 is
free parameter controlled the mobility)

eq
f0 = ρ sf0 = 0

eq
f1 = −11ρ + 19

μϕ

c2
s

+ 19
j · j
ρ0

sf1 = 1

τf

eq
f2 = 3ρ − 9

μϕ

c2
s

− 11

2

j · j
ρ0

sf2 = sf1

eq
f3,5,7 = jx,y,z sf3,5,7 = 0

eq
f4,6,8 = − 2

3
jx,y,z sf4,6,8 = 8

(2 − sf1)

(8 − sf1)

eq
f9 = 3j2

x − j · j
ρ0

sf9 = sf1

eq
f10 = − 3j2

x − j · j
2ρ0

sf10 = sf1

eq
f11 = j2

y − j2
z

ρ0
sf11 = sf1

eq
f12 = − j

2
y − j2

z

2ρ0
sf12 = sf1

eq
f13 = jxjy

ρ0
sf13 = sf1

eq
f14 = jyjz

ρ0
sf14 = sf1

eq
f15 = jxjz

ρ0
sf15 = sf1

eq
f16−18 = 0 sf16–18 = sf1
Sources 172 (2007) 542–552 545

=
∑
i

gi, (18)

:=(jx, jy, jz) =
∑
i

fiei + δ

2
ρ0G. (19)

t should be indicated that the density ρ defined in our
ork can be thought as a nominal density, the real local
ensity should be obtained in terms of the order parameter
s ρ(ϕ) = ρg + (ϕ−ϕg)(ρl − ρg)/(ϕl −ϕg), where ϕl and ϕg
re the upper and lower limits of the order parameter and
an be determined by the Maxwell’s equal-area rule. The
eason we use the nominal density in our work is that the
alue of it changes little in the whole flow field and thus the
ncompressible limit of the LBM is satisfied. On the other
and, the density difference is reflected in the order parameter
and its related chemical potential μ, which acts as a force

nd is added in the flow field. The magnitude of this force is
ontrolled by the surface tension and the interface thickness
nly. Therefore, large density difference cases can be handled
asily and stability is not critical in this model. Besides this,
ne can note that all the elements in Q are integers and the
nverse of the matrix Q can be calculated by Q−1 = QT/(Q·QT)
ecause Q is an orthogonal matrix, therefore, the program can
e efficiently coded by hand to reduce time-consuming matrix
perations and thus enhancing computational efficiency in
unning the program. The main steps in the implementation of
he present method can be summarized as the following:
Step 1: Compute moments {meq
fi } and {meq

gi } from the fluid

density and velocity (initially setting mfi = m
eq
fi and mfi =

m
eq
fi ).

the initial value of the density, τf = 3η/(ρδt) + 0.5 and τg = M/Γ + 0.5 and Γ is

m
eq
g0 = ϕ sg0 = 0

m
eq
g1 = −30ϕ + 19

Γμ

c2
s

sg1 = 1

τg

m
eq
g2 = 12ϕ − 9

Γμ

c2
s

sg2 = sg1

m
eq
g3,5,7 = ϕ

ρ0
jx,y,z sg3,5,7 = 0

m
eq
g4,6,8 = − 2ϕ

3ρ0
jx,y,z sg4,6,8 = 8

(2 − sg1)

(8 − sg1)

m
eq
g9 = 0 sg9 = sg1

m
eq
g10 = 0 sg10 = sg1

m
eq
g11 = 0 sg11 = sg1

m
eq
g12 = 0 sg12 = sg1

m
eq
g13 = 0 sg13 = sg1

m
eq
g14 = 0 sg14 = sg1

m
eq
g15 = 0 sg15 = sg1

m
eq
g16−18 = 0 sg16–18 = sg1
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Step 2: Calculation the equilibria {meq
fi } and {meq

gi } in the
moment space.
Step 3: Compute the post-collision density distribution func-
tions by Eqs. (10) and (11).
Step 4: Advecting the distribution function {fi} and {gi}.

.3. Boundary conditions and numerical evaluation of the
erivatives

One of the advantages of the LB method over the conventional
avier–Stokes solvers is the implementation of the boundary

ondition on the complex geometries like the GDL structure
hown in Fig. 1. Theoretically, this kind of geometry can only be
pproximated by the zigzag grids (see Fig. 2) due to the difficul-
ies of experimental measuring or mathematical describing the
xact boundary positions. In this situation, the standard bounce
ack boundary condition of the LB method provides an efficient
nd simple way to model the non-slip condition in terms of the
istribution functions {fi}. As shown in Fig. 2, the unknown
istribution functions (black dash arrow) coming from the solid
art can be simply set to the known values of their corresponding
nes with opposite directions (blue solid arrow) and the actual
on-slip boundary can be realized at the one-half grid spacing
eyond the last fluid node [23].

Since the wetting boundary condition (Eq. (4)) is an equi-

ibrium condition, it is appropriate to impose it through the
quilibria {meq

gi } [35]. From Eq. (4), to set the equilibrium bound-
ry condition we usually need to calculate the normal vector of
he boundary so that the order parameter ϕ and its second deriva-

t
p
w
i

Fig. 3. Time variations of the spreading and shrinking droplet shape at θ = 60◦ a
eometry (fluid points: blue solid circle; solid points: black solid circle; the
earest and next-nearest fluid-side points: inside the green dash elliptic circle).

ives ∇2ϕ on the boundary nodes are obtained. However, as we
tressed earlier, it is difficult for the geometries like the GDL.
o avoid this difficulty, in this work we use an approximation
trategy to evaluate them. In Fig. 2, the boundary point P (red
olid circle) is surrounded by some fluid points (blue solid circle)
nd some solid points (black solid circle). To obtain the values
f ϕ and ∇2ϕ on the point P, Taylor series expansions of ϕ on
he nearest and next-nearest neighboring fluid-side points of the

oint P (see Fig. 2) are carried out, and for each expansion point
e have ϕP =ϕf,l − δ∂rϕ + O(δ2), which can be further approx-

mated by ϕP ∼=ϕf,l − δ∂nϕ. Therefore, on average, the order

nd 120◦, respectively. The isosurface represents the order parameter ϕ = 0.
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arameter ϕ and its second derivatives ∇2ϕ on the point P can
e approximated as:

P
∼=

∑
l(ϕf,l − δ∂nϕP )

N
=

∑
l(ϕf,l + |δ| (γ/k))

N
, (20)

2ϕP ∼= 2
∑
l(ϕf,l − ϕP − δ∂nϕP )

N

= 2
∑
l(ϕf,l − ϕP + |δ| (γ/k))

N
, (21)

here δ is the unit grid space and ϕf,l is the order parameters on
he nearest and next-nearest neighboring fluid-side points of the
oint B; l = 1, 2, . . ., N with N representing the total number of the
earest and next-nearest fluid-side points of the point P; γ can
e calculated from Eq. (4) directly. The implementation of Eqs.
20) and (21) is straightforward by using the lattice stencils, and
ne can judge and count the fluid-side points by the streaming
irections of the discrete velocities whether pointing to fluid
eld or not.

In the LB framework, the first order and second order deriva-
ives of ϕ in the fluid field can also be conventionally calculated
y using the lattice stencils so that the discretization errors are
educed. In this work, the following stencil scheme is used:

jϕ = 3
∑
iwiϕ(r + eiδt, t + δt)eij

δt
, (22)

2ϕ = −24ϕ(r, t) + 36
∑
iwiϕ(r + eiδt, t + δt)

6(δt)2 , (23)

here j = 1, 2, 3 denotes the dimensions.

. Results and discussion

.1. Model validation

To validate the present model, a static droplet held on a wall is

imulated, and the contact angle is tested. A hemispheric droplet
ith radius R placed on a wall is considered and it is brought

o the equilibrium state at rest under the effects of the wet-
ing potential γ imposed on wall. The computational domain

ig. 4. Comparison of calculated contact angles with the theoretical predictions
Eq. (4)) (triangle, theoretical prediction; circle, simulation results).

i
e
o
a
ξ

F
a

ig. 6. Comparison of the calculated absolute permeability of the GDL as a
unction of the fluid kinetic viscosity.

s divided into a 51 × 51 × 51 cubic lattice with δ= 1 and its

dges parallel to the x, y and z coordinate axes. The radius
f the droplet R is set 10δ or 15δ. The other parameters used
re ρl/ρg = 1000, ηl/ηg = 100, ρg = 1, ηg = 0.1, σ = 7.86 × 10−2,
= 4.5δ and Γ = 10−2. The contact angle is changed in the range

ig. 7. Comparison of the relative permeabilities obtained by the present model
nd van Genuchten function (Eq. (29)).
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f 45◦ ≤ θ≤ 145◦. Periodic boundary conditions are applied in
oth x and y directions and non-slip/wetting boundary condi-
ions are used at top and bottom walls in z direction. For this
roblem, the equilibrium radius Rc and contact angle θc of the
roplet can be calculated by the following formula [36]:

c = 1
(
h+ b2 )

, (24)

2 4h

c = arctan

(
b

2(R− h)

)
, (25)

t
θ

a
a

ig. 8. Snapshots of the liquid-gas transport processes in the model of GDL at δp = 1
ndicated by the arrow on the top of the figure.
Sources 172 (2007) 542–552

here h is the height of the droplet and b is the contact length
f the droplet connecting to the wall.

Fig. 3(a) and (b) shows the time variations of the droplet
n the hydrophilic (θ = 60◦) and hydrophobic (θ = 120◦) walls,
espectively. It is seen from Fig. 3(a), the droplet spreads as the
ime passes and finally reaches to its equilibrium shape with
he calculated contact angle θc = 59◦. As shown in Fig. 3(b), the
onnecting area between the droplet and the wall reduces as the

ime passes, and the droplet reaches its equilibrium shape with
c = 122◦. Fig. 4 shows the variation of the calculated contact
ngle with the wetting potentialγ . The present results are in good
greement with the theoretical curve obtained by Eq. (4). The

.7 × 10−3 (left row) and 3.4 × 10−3 (right row), respectively. Flow direction is
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on the pressure drop δp. In this case, we fix the contact angle
θ = 120◦ and viscosity ratio ηl/ηg = 100, and examine the effects
of two values of pressure drop δp = 1.7 × 10−3 and 3.4 × 10−3,
respectively.
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greement between the theory and our simulation indicates that
he present method handles the two-phase flows with wetting
oundaries correctly.

.2. Liquid-gas flows in GDL

For the works presented in this section, we fit a 3D-geometry
o a carbon-fiber structure of the GDL with a porosity of 80.3%
nd characteristic pore scale 10 �m (see Fig. 1) by the DPD
ethod [37]. The carbon fiber made in the GDL is hydrophobic,

nd therefore in the following the gas phase is denoted as the
etting phase (WP) while the liquid phase as non-wetting phase

NWP) for brevity. The computational domain is discretized by
1 × 51 × 51 or 101 × 101 × 101 cubic lattice with the same
oordinate arrangement as in the case of Section 3.1. Periodic
oundary conditions are used on all sides of the domain for the
elocity field. For the order parameter, it is assumed to be equal
o 1 (liquid phase) at one side and −1 (gas phase) at the opposite
ide and the other four sides are treated as periodic bound-
ries. Unless otherwise indicated, other parameters used in the
imulations of this section are same as those used in Section 3.1.

.2.1. Absolute permeability and comparison between the
GK and MRT model

The mathematical basis of immiscible two-phase flows in a
orous medium is Darcy’s law, written as

¯ = −K(kij)

η
∇p, (26)

here ū denotes the average flow velocity and K represents the
bsolute permeability tensor of the porous medium. The compo-
ent kij of the permeability tensors represents the permeability
f the material in the direction parallel to the jth coordinate axis
f the main flow direction is parallel to the ith coordinate axis.
or convenience, here we assume that the edges of the sam-
le are parallel to the Cartesian coordinate axes. As a direct
onsequence, the off-diagonal elements of K are equal to zero.
urthermore, if the pressure gradient (i.e., the main flow direc-

ion) is parallel to the ith coordinate axis, Darcy’s law reduces
o the scalar equation and we have

ii = −ηLūi
δp

, (27)

here ūi is the average flow speed, L the length of the medium
dge which is parallel to the ith coordinate axis, and δp stands
or the pressure difference across the medium in the ith direc-
ion. The present situation is visualized in Fig. 5, which shows
treamlines of the velocity field at δp = 1.7 × 10−3, θ = 120◦ and
l/ηg = 100.

The absolute permeability of the GDL with respect to differ-
nt fluid kinetic viscosities is also calculated. In this simulation,

constant pressure drop δp = 1.7 × 10−3 is applied to the
ingle-phase flow through the GDL on the 51 × 51 × 51 and

01 × 101 × 101 grids. To show the advantage of the MRT
odel over its BGK counterparts, the simulation using the BGK
odel is carried out at the same time. Fig. 6 shows the calcu-

ated absolute permeabilities at various viscosities obtained by
F
d
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he MRT and BGK models. It is clearly seen that the permeabil-
ties obtained by the MRT model remain essentially constant for
oth grid sets when the viscosity changes. However, the results
f the BGK simulation change significantly and increase with
ncreasing viscosity. Therefore, compared to the BGK model,
he present MRT model is more suitable for simulating mul-
iphase flow systems, in which different viscosities coexist. In
ddition, by using the MRT model for the multiphase flow sys-
ems, computational efficiency can be enhanced by using coarser
rid set while desired accuracy is achieved. Based on the above
bservations, all the following simulations use the 51 × 51 × 51
rid set.

.2.2. Relative permeability and effects of pressure drop,
ettability and viscosity ratio

The relative permeability Kr is defined by an extension of
arcy’s law to

¯ = −Kr(Sa)K
η

∇p, (28)

here Sa (ratio of phase volume over pore volume in GDL)
eflects that the permeability depends on the saturation. Using
q. (28) we can calculate Kr(Sa) for both wetting and non-
etting phases. Theoretically, the relative permeabilities can be
ritten in terms of the saturations of each phase as the well
nown van Genuchten function

r(Sa) = Sa1/3(1 − (1 − Sa)(n−1)/n)
2(n−1)/n

(29)

here the values of n are in the range of 2 ≤ n ≤ 5. Fig. 7 shows
he comparison of the calculated Kr(Sa) by the present model
nd Eq. (29). Seen from this figure, the results obtained by the
resent model generally agree with the solutions of Eq. (29).
ith the increase of the NWP saturation, and the WP permeabil-

ty decreases while the NWP permeability increases. In order to
ake a deep insight of the relative permeability, in the following
e first investigate the dependency of the relative permeability
ig. 9. Relative permeability vs. NWP saturation for liquid-gas flow in GDL at
ifferent δp with θ = 120◦.
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Fig. 8 shows snapshots of the liquid-gas transport processes
n the GDL at three different time steps at δp = 1.7 × 10−3 and
.4 × 10−3, respectively. For clearly displaying the liquid trans-

ortation, the GDL structure is not shown in this figure and the
ollowing Fig. 11. As illustrated in Fig. 8, larger δp drives the
WP to move faster than the small δp because larger driving

orce more easily overcomes the capillary resistance due to the

n
t
a
p

ig. 10. Snapshots of the liquid-gas transport processes in the model of GDL at conta
s indicated by the arrow on the top of the figure.
Sources 172 (2007) 542–552

nterface tension. The influence of δp on the relative permeabil-
ty Kr for both NWP and WP is shown in Fig. 10. As shown in
ig. 9, when δp is increased, the WP relative permeability does

ot change much for the range of the NWP saturation. However,
he NWP permeability is increased slightly at the intermedi-
te NWP saturation. These observations are in agreement with
revious numerical and experimental works [22,36].

ct angles θ = 105◦ (left row) and 120◦ (right row), respectively. Flow direction
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ig. 11. Relative permeability vs. NWP saturation for liquid-gas flow in GDL
t different contact angles with δp = 1.7 × 10−3 and ηl/ηg = 100.

Next, the effects of the wettability on the relative perme-
bilities at δp = 1.7 × 10−3 and ηl/ηg = 100 are studied. The
ettability of the wall is controlled by tuning the contact angle θ.
ere, two contact angles θ = 105◦ and 120◦ are examined. Fig. 10

hows snapshots of the liquid-gas transport processes with the
wo contact angles in the GDL at three different time steps. As
llustrated in this figure, at the smaller contact angle θ = 105◦, i.e.
stronger wettability of the GDL, the NWP transport faster than

hat at θ = 120◦. The reason behind this phenomenon is obvious:
he stronger the wettability of the GDL has, the larger the driven
orce imposed on the liquid, and hence the easier the liquid
ovement overcomes the resistance of the capillary force. This
echanism also leads to a higher NWP relative permeability in

he strong-wettability GDL than in the weak-wettability one, and
his finding can be observed in Fig. 11, which shows Kr for both
WP and WP as a function of the NWP saturation at contact

ngles θ = 105◦ and 120◦, respectively. Again, the observations
rom Figs. 10 and 11 are in agreement with previous numerical
nd experimental works [22,36].
The viscosity-ratio effects on the relative permeability at
p = 1.7 × 10−3 and θ = 120◦ are further studied in Fig. 12, which
hows the relative permeabilities of the NWP and WP as a func-

ig. 12. Relative permeability vs. NWP saturation for liquid-gas flow in GDL
t different viscosity ratios with δp = 1.7 × 10−3 and θ = 120◦.
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ion of the NWP saturation for two viscosity ratios, ηl/ηg = 10
nd ηl/ηg = 100. Consistent with the findings in the previous
orks [22,36], we also observe that a decreased relative perme-

bility of the NWP is caused by an increased viscosity ratio,
specially at intermediate saturation. This phenomenon can be
ttributed to the so-called “lubricating” effect on the liquid flow
ue to a gas film, which is caused by that, gas flowing in rel-
tively small pores is strongly coupled to the liquid flowing in
he larger regions of pore structure, and makes liquid experience
n apparent hydraulic slip [36]. The greater the viscosity ratio,
he greater the hydraulic slip becomes. On the other hand, as
hown in Fig. 12, the relative permeability of the WP slightly
ncreases, which indicates that the lubricating effect cause an
ncrease of the WP average velocity and hence the WP relative
ermeability.

. Conclusions

In this paper, a MRTLB model is presented and applied to
imulate water-gas transportations in the GDL of a PEM fuel
ell. The model is based on the diffuse interface theory, and
mploys two distributions so that multiphase flows with large
ensity ratios and various viscosities can be handled. The inter-
ace tension and wetting boundary condition in the present model
re straightforwardly implemented. To numerically realize the
oundary conditions for the complicated structure like GDL,
esides the standard bounce back condition used for the non-
lip condition, an approximated average scheme based on the
xtrapolation method is derived to mimic wetting boundaries.
he numerical validation of the static droplet on a wetting wall
hows good agreement with the theoretical predictions. Com-
ared to the conventional macroscopic multiphase models like
olume-averaged or pore-level models, which cannot track the
nterface itself, the present MRTLB model tracks the phase
nterface automatically and has advantages in programming sim-
licity, intrinsic parallelism and straightforward resolution of
omplex boundaries. Furthermore, the present model can easily
andle the three-dimensional cases as shown in this paper.

The water-gas transportation in a 3D modeled GDL structure
s simulated and the transport properties including absolute and
elative permeabilities are calculated. The effects of the pressure
rop, wettability and viscosity ratio on the relative permeability
re also investigated. The obtained results show the expected
rend as in the previous numerical and experimental works. This
nvestigation demonstrates that the present multiphase MRTLB

odel is potentially a viable method for the flows in fuel
ells.
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